Augmenting Trust Networks for Improved Recommendation Generation: A T-index Approach

نویسندگان

  • Soude Fazeli
  • Alireza Zarghami
  • Nima Dokoohaki
  • Mihhail Matskin
چکیده

Social Networks have dominated growth and popularity of the Web to an extent which has never been witnessed before. Such popularity puts forward issue of trust to the participants of Social Networks. Collaborative Filtering Recommenders have been among many systems which have begun taking full advantage of Social Trust phenomena for generating more accurate predictions. For analyzing the evolution of constructed networks of trust, we utilize Collaborative Filtering enhanced with T-index as an estimate of a user’s trustworthiness to identify and select neighbors in an effective manner. Our empirical evaluation demonstrates how T-index improves the Trust Network structure by generating connections to more trustworthy users. We also show that exploiting T-index results in better prediction accuracy and coverage of recommendations collected along few edges that connect users on a network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...

متن کامل

Prediction of user's trustworthiness in web-based social networks via text mining

In Social networks, users need a proper estimation of trust in others to be able to initialize reliable relationships. Some trust evaluation mechanisms have been offered, which use direct ratings to calculate or propagate trust values. However, in some web-based social networks where users only have binary relationships, there is no direct rating available. Therefore, a new method is required t...

متن کامل

Improved Recommendations Based on Trust Relationships in Social Networks

In order to alleviate the pressure of information overload and enhance consumer satisfaction, personalization recommendation has become increasingly popular in recent years. As a result, various approaches for recommendation have been proposed in the past few years. However, traditional recommendation methods are still troubled with typical issues such as cold start, sparsity, and low accuracy....

متن کامل

A Novel Trust Computation Method Based on User Ratings to Improve the Recommendation

Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...

متن کامل

Elevating Prediction Accuracy in Trust-aware Collaborative Filtering Recommenders through T-index Metric and TopTrustee lists

The growing popularity of Social Networks raises the important issue of trust. Among many systems which have realized the impact of trust, Recommender Systems have been the most influential ones. Collaborative Filtering Recommenders take advantage of trust relations between users for generating more accurate predictions. In this paper, we propose a semantic recommendation framework for creating...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010